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Abstract

With the advance of omnidirectional panoramic technology,
360◦ imagery has become increasingly popular in the past
few years. To better understand the 360◦ content, many
works resort to the 360◦ object detection and various crite-
ria have been proposed to bound the objects and compute the
intersection-over-union (IoU) between bounding boxes based
on the common equirectangular projection (ERP) or perspec-
tive projection (PSP). However, the existing 360◦ criteria are
either inaccurate or inefficient for real-world scenarios. In this
paper, we introduce a novel spherical criteria for fast and ac-
curate 360◦ object detection, including both spherical bound-
ing boxes and spherical IoU (SphIoU). Based on the spheri-
cal criteria, we propose a novel two-stage 360◦ detector, i.e.,
Reprojection R-CNN, by combining the advantages of both
ERP and PSP, yielding efficient and accurate 360◦ object de-
tection. To validate the design of spherical criteria and Repro-
jection R-CNN, we construct two unbiased synthetic datasets
for training and evaluation. Experimental results reveal that
compared with the existing criteria, the two-stage detector
with spherical criteria achieves the best mAP results under the
same inference speed, demonstrating that the spherical crite-
ria can be more suitable for 360◦ object detection. Moreover,
Reprojection R-CNN outperforms the previous state-of-the-
art methods by over 30% on mAP with competitive speed,
which confirms the efficiency and accuracy of the design.

1 Introduction

In the past few years, virtual reality techniques have devel-
oped rapidly owing to the development of 360◦ cameras with
omnidirectional vision. The 360◦ images and videos allow
users to receive detailed information, thereby improving the
quality of experiences (Ardouin et al. 2012; Huang et al.
2017). 360◦ cameras also play important roles in scenarios
which require wide-range field-of-view (FoV). Object de-
tection is a significant computer vision task that deals with
detecting semantic objects in images and videos. Recent ad-
vances with convolutional neural network (CNN) (Ren et al.
2015; Liu et al. 2016; He et al. 2017) achieve remarkable
improvements in 2D task. However, object detection in 360◦
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Figure 1: Challenges in 360◦ object detection. Objects in
ERP suffer from distortion and discontinuity on the borders
while objects can hardly be recognized with only few PSPs.
Besides, spherical BB (red outline) bounds the object more
tightly than common rectangular BB (blue outline)

images is still challenging due to the following two reasons,
as listed below.

Lack of Appropriate Criteria. Unlike image classifica-
tion task, additional information is required in object detec-
tion to locate objects and compute metrics, i.e., bounding
boxes (BB) and intersection-over-union (IoU). Although ex-
isting works proposed various criteria for 360◦ object detec-
tion, they either introduce bias in BB and IoU (Yang et al.
2018; Lee et al. 2019; Yu and Ji 2019; Wang and Lai 2019),
or could not efficiently compute IoU (Coors, Paul Con-
durache, and Geiger 2018). Moreover, some criteria (Su and
Grauman 2017) could not even be applied in the actual sce-
narios. Thus, it is necessary to introduce an efficient and ac-
curate criteria for 360◦ object detection.

Dilemma between Distortion Reduction and Effi-
ciency. 360◦ images are typically represented by equirect-
angular projection (ERP) (Snyder 1997) or multiple per-
spective projections (PSP). ERP is generated by polar trans-
formation, and thus suffers from both distortion in the polar
regions and discontinuity on the boundary. PSP projects a
partial area of the sphere onto a focal plane with little dis-
tortion but a large number of candidate areas are required to
cover all the objects on sphere, which is time consuming.

To address the above challenges, we explore the unbi-
ased criteria on sphere and introduce spherical criteria as
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an efficient and accurate approximation of unbiased mea-
surement, including both spherical BB (SphBB) and spher-
ical IoU (SphIoU). Based on spherical criteria, we propose
a novel two-stage object detector, i.e., Reprojection R-CNN
(Rep R-CNN), by taking full advantage of both ERP and
PSP. Specifically, it generates candidate regions efficiently
based on the omnidirectional FoV of ERP and conducts pre-
cise refinement over the distortion-free PSPs. Due to the lack
of unbiased dataset for 360◦ object detection, we construct
two datasets, i.e., VOC360 and COCO-Men, for training and
evaluation. Experiment results reveal that spherical criteria
can lead to more accurate predictions than the existing cri-
teria on the same baseline model with the similar inference
speed, demonstrating both efficiency and accuracy of the de-
sign. Moreover, Rep R-CNN outperforms all state-of-the-art
methods on both datasets and achieves at least 30% improve-
ment over the strongest baseline. Besides, Rep R-CNN gains
good detection results in realistic scenarios, indicating the
feasibility for some real-world applications.

2 Related Work
CNNs on 360◦ Vision: Recent advances in 360◦ images
resort to geometric information on the sphere. (Khasanova
and Frossard 2017) applies graph convolutional network on
ERP. (Esteves et al. 2018) proposes SO(3) 3D rotation group
in convolutions and on top of that, suggests transform-
ing S2 space to a SO(3) representation to reduce distortion
and encode rotation equivariance in the network. also in-
troduces spherical U-Net for saliency detection based on
spherical property. Meanwhile, some works attempt to di-
rectly solve the distortion in ERP. (Su and Grauman 2017;
2019) transfer knowledge from a pre-trained CNN on PSP to
novel networks on ERP. Other approaches (Coors, Paul Con-
durache, and Geiger 2018; Tateno, Navab, and Tombari
2018; Zhao et al. 2018) refer to the idea of deformable
convolution (Dai et al. 2017), and propose the distortion-
aware spherical convolution (SphConv), where the convo-
lutional filter gets distorted in the same way as the ob-
jects on ERP. Though the above methods outperform planar
CNNs, they could not completely eliminate the distortion
on ERP. The representations other than ERP and PSP, e.g.,
Cubemap (Boomsma and Frellsen 2017; Cheng et al. 2018)
and icosahedral mesh (Lee et al. 2019; Cohen et al. 2019;
Jiang et al. 2019) are also introduced for 360◦ images. Since
they still suffer from distortion and heavy computation la-
tency, they are not widely used in the real-world scenarios.
Object Detection in 360◦ Images: (Su and Grauman 2017)
introduces SPHCNN as the backbone network of Faster R-
CNN (Ren et al. 2015). For evaluation, they construct a
synthetic dataset by projecting BBs in 2D images onto the
sphere, and assume the object centers are known in ad-
vance. (Yang et al. 2018) exploits a PSP-based YOLO de-
tector (Redmon and Farhadi 2017) on a real-world 360◦
dataset. They frame the objects with rectangular BBs on
ERP, which are distorted on sphere. (Yu and Ji 2019; Wang
and Lai 2019) also follow this simple ERP-oriented criteria
so that the predictions are still biased even if novel convo-
lutional kernels are applied. In contrast, (Coors, Paul Con-
durache, and Geiger 2018) utilizes a tangent plane based

Figure 2: ERPBB (blue outline), CirBB (orange outline) and
UnbBB (TanBB/SphBB, red outline) on sphere and ERP.

BB for unbiased 360◦ detection. However, since it is hard
to measure BBs on different tangent planes, the IoU compu-
tation is still defined on distorted ERP. They also build up the
synthetic FlyingCars dataset for experiment. Different from
above methods, SpherePHD (Lee et al. 2019) conducts de-
tection on polyhedrons in the SYNTHIA dataset (Ros et al.
2016), and uses bounding circles as measurements.

It is apparent that the existing methods exploit various bi-
ased criteria, i.e., BBs and IoUs, in different datasets. This
situation attributes to the lack of appropriate 360◦ criteria
and 360◦ dataset. In this paper, we introduce efficient and ac-
curate spherical criteria for practical 360◦ object detection,
and create two datasets for unbiased training and evaluation.

3 Spherical Criteria for Fast and Accurate

360◦ Object Detection

Criteria of 360◦ Object Detection

The BB and IoU are fundamental part of object detection,
where the mean average precision (mAP) and the widely-
used non-maximum-suppression (NMS) are all defined on
those two elements. In the scenario of 360◦ object detec-
tion, a normal rectangular BB can not appropriately bound
the object on sphere, and it is also difficult to define the in-
tersection between objects with different centers due to the
curvature of sphere. Therefore, it is necessary to establish a
standard (unbiased) criteria for 360◦ object detection.

Unbiased Criterion for 360◦ Object Detection

Suppose you are watching a VR video, where each frame is
a 360◦ image, and you want to see an object clearly on the
image. You turn the body and move the head until your sight
is aligned with the object center. Then, the object is in the
center of your field-of-view and forms a curved rectangle on
the sphere. Following the above procedure, we can deduce
that the unbiased BB on sphere (UnbBB) can be represented
by either a certain part of FoV on sphere or a rectangle on
the tangent plane where the object center is the tangent point.
Note that these two representations are equivalent as shown
in Figure 2, and are both unbiased. However, it is still hard
to directly define the intersection between UnbBBs because:
(1) The center of the intersection can not be properly defined
when UnbBBs have different centers; (2) The shape of inter-
section is usually irregular on sphere. To ensure an unbiased
and uniform measurement, we compute unbiased IoU (Un-
bIoU) by integral on sphere. The UnbBB and UnbIoU are
served as the ground-truth criteria in this paper.
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Existing Criteria for 360◦ Object Detection

Before going into the proposed spherical criteria, we will
first look into the existing criteria on 360◦ object detection:
1. The existing methods (Yang et al. 2018; Yu and Ji 2019;

Wang and Lai 2019) mainly regard ERP as a 2D image,
and bound objects by rectangles on ERP. Since ERP is
unwrapped by polar coordinates, the BB of object B on
ERP (ERPBB) can be represented by: ERPBB(B) =
(Bθ, Bφ, BΔθ, BΔφ), where Bθ and Bφ represent the lat-
itude/longitude of the object’s center, and BΔθ, BΔφ rep-
resent the transformed width/height of the object’s occu-
pation on ERP. Similarly, the IoU on ERP (ERPIoU) is
computed in the same way as the planar detection task.

2. (Su and Grauman 2017) and (Coors, Paul Condurache,
and Geiger 2018) utilize the rectangle on the tan-
gent plane as BB (TanBB) annotation: TanBB(B) =
(Bθ, Bφ, Bw, Bh), where Bθ and Bφ are the object’s cen-
ter, while Bw and Bh are the width/height of rectangle.
Besides, Coors et al. also introduce in-plane rotation in
TanBB but it does not match the realistic scenario. Since
only considers the IoU between proposals with the same
center point (since they do not aim at building a detec-
tor), we refer to the method proposed by Coors et al.,
where IoU (PolyIoU) is approximated by the overlap of
two polygonal regions on ERP. Specifically, the outlines
of TanBBs are evenly sampled on tangent planes and pro-
jected by inverse gnomonic projection (Coxeter 1961),
forming convex polygons on ERP. The PolyIoU can then
be linearly computed by (Preparata and Shamos 2012).

3. (Lee et al. 2019) exploits circular BB (CirBB) on ERP,
cubemap and SphPHD to bound the objects. Here, we
only consider CirBB on ERP because it is best-performed
in the natural non-rotation task (Lee et al. 2019) and is
more common than cubemap and SphPHD. A CirBB can
be represented by: CirBB(B) = (Bθ, Bφ, r), where r
is the radius. The IoU between CirBBs (CirIoU) is com-
puted based on the circle-circle intersection (Weisstein
2003).

Limitation of Unbiased and Existing Criteria

In this section we will show the advantages and drawbacks
of the existing criteria for the practical 360◦ object detection.
1. UnbBB and UnbIoU: It is undoubted that unbiased crite-

ria would lead to the most accurate 360◦ object detection.
However, the computation of UnbIoU is time-consuming
that is inefficient for practical 360◦ detection task.

2. ERPBB and ERPIoU: Due to the uneven sampling of po-
lar projection, the pixel size on ERP varies with latitude
and thus the uniform ERP-based measurement is biased
on sphere, as illustrated in Figure 2. Besides, an identical
ERPBB may correspond to areas of various shapes and
sizes at different locations on the sphere.

3. TanBB and PolyIoU: TanBB is shown to be unbiased
such that it could tightly bound the objects on the sphere.
However, although PolyIoU is a more accurate measure-
ment of UnbIoU, it still suffers from the bias on ERP and
requires more time in the projection and IoU computing.

Figure 3: Relative IoU between UnbIoU and other IoUs.

4. CirBB and CirIoU: CirBB and CirIoU sustain the more
series bias problem than ERP-based criteria as shown in
Figure 2. Besides, CirBB may exceed the upper/lower
boundaries of ERP when the objects are near the pole.

Spherical Criteria for Fast and Accurate 360◦
Object Detection

According to the above analysis, we can conclude that the
existing criteria are either biased or inefficient for real-world
detection task. Thus, we introduce the spherical criteria
for fast and accurate 360◦ object detection, including both
spherical BB (SphBB) and spherical IoU (SphIoU).
Spherical BB: To eliminate the bias in ERP, we uti-
lize the unbiased FoVs to measure the size of objects:
SphBB(B) = (Bθ, Bφ, Bfovx

, Bfovy
), where Bθ and Bφ

denote the object center, and Bfovx , Bfovy represent the
left-right/up-down FoVs of the object’s occupation. Note
that SphBB is directly defined on sphere other than ERP or
tangent plane. The shape of SphBB can be regarded as a por-
tion of spherical segment (Kern and Bland 1938) centered at
the equator. In concrete, assume the SphBB of B is moved
to the equator, which does not influence the shape and size,
and then the area on the unit ball can be computed as:

Area(B) = 2πr · h · p (1)
= 2πr · 2r sin(Bfovy

/2) · (Bfovx
/2π) (2)

= 2r2Bfovx
sin(Bfovy

/2) (3)

= 2Bfovx
sin(Bfovy

/2). (4)

Spherical IoU: Based on SphBB, we introduce SphIoU for
fast and accurate approximation of UnbIoU. SphIoU as-
sumes that the intersection between two SphBBs Bi and Bj

also forms a SphBB. The FoVs of the intersection can then
be derived from the difference between the upper left and
lower right corners of the rectangle, which is similar to the
planar IoU, except that the width and height are now deter-
mined by FoVs. Then, the FoVs of the intersection, namely
Bij

fovx
and Bij

fovy
, can be deduced by:

δijxmax
= min{Bi

φ +Bi
fovx

/2, Bj
φ +Bj

fovx
/2}, (5)

δijxmin
= max{Bi

φ −Bi
fovx

/2, Bj
φ −Bj

fovx
/2}, (6)

δijymax
= min{Bi

θ +Bi
fovy

/2, Bj
θ +Bj

fovy
/2}, (7)

δijymin
= max{Bi

θ −Bi
fovy

/2, Bj
θ −Bj

fovy
/2}, (8)

Bij
fovx

= max{0, δijxmax
− δijxmin

}, (9)
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Bij
fovy

= max{0, δijymax
− δijymin

}. (10)

It is worth mentioning that the above computation is equiv-
alent to the case that we first move both Bi and Bj to
the equator (by adding a constant on the latitudes because
any change on the latitudes do not affect the final result in
Eqn. 9 and Eqn. 10), and then compute the approximated
area of the intersection. Thus, SphIoU can exclude the case
that a SphBB wraps the pole where the intersection is hard
to define, and also possess a more accurate estimation of
actual IoU because the pixel size on equator is more uni-
form. Besides, the centers of Bi and Bj may appear in sep-
arate boundaries of ERP where SphBBs are far in the po-
lar coordinates (e.g., -175◦ and 175◦ in longitude), result-
ing in zero IoU, but cover similar regions on the sphere.
Thus, we rotate the sphere by 180◦ along z-axis and com-
pute a rotated IoU between Bi and Bj . It can be inferred that
the latitudes remain unchanged, and the longitudes become
(Bi′

φ = Bi
φ %360 − 180) and (Bj′

φ = Bj
φ %360 − 180).

Then, we take the maximum of the origin IoU and the ro-
tated IoU as the final SphIoU.

Advantages of Proposed Spherical Criteria

In this section, we will show the advantages of the proposed
spherical criteria by comparing it with other criteria. Specif-
ically, we exploit IoU accuracy and IoU computation com-
plexity as the measurement index.
IoU Accuracy: To measure the IoU accuracy, we randomly
select BBs on sphere, compute IoUs in different criteria be-
tween pairs of BBs. Then, We calculate the relative IoU dif-
ference between UnbIoU and the other IoUs, and plot the di-
agram in Figure 3. Since both ERPBB and CirBB use biased
BBs on ERP and introduce extreme bias in the IoU mea-
surement, ERPIoU and CirIoU are much more inaccurate
than SphIoU and PolyIoU. Though PolyIoU utilize unbiased
TanBB to frame the objects, it still suffers from distortion
on ERP. Owing to the spherical measurement of SphBB and
the exclusion of extreme situations, the proposed SphIoU
has less than 0.1 deviation from the UnbIoU, indicating that
SphIoU is an accurate approximation of ground truth.
IoU Computation Complexity: It is obvious that ERPIoU,
CirIoU and SphIoU can all be computed in O(1) time.
Though PolyIoU needs to re-project the sampled outlines
back to ERP, the projections can be pre-calculated and thus
only linear computation on the number of outline sampling
is required for PolyIoU. Different from the above IoUs, the
UnbIoU is highly time-consuming due to the integral on
sphere, which is inefficient for real-world 360◦ applications.

4 Reprojection R-CNN

Two-stage 360◦ Detection with Spherical Criteria

It is a common consensus that two-stage detectors can reach
higher accuracy rates, but are inherent slower than one-stage
detectors. Thus, for a practical two-stage 360◦ detector, it is
necessary to deal with the speed problem while maintaining
the accuracy. To compensate for the low speed, the existing
two-stage 360◦ detectors (Yu and Ji 2019; Wang and Lai
2019) adopt the less computationally intensive ERP-based

criteria to frame the objects, but introduce severe bias and
distortion in the detection results. Regarding the proposed
spherical criteria, it does not introduce any bias in BB and
attains relatively high speed in IoU computation under little
precision sacrifice, which is necessary for fast and accurate
two-stage 360◦ object detection. Thus, we apply spherical
criteria in the proposed two-stage detector.

Combining ERP and PSP in a Two-stage Detector

As discussed in Sec. 1, ERP and PSP are two common rep-
resentations of 360◦ images and they have their own advan-
tages and disadvantages. Though ERP introduces severe dis-
tortion in the image, it possesses 360◦ FoV which possesses
all information on the sphere. Meanwhile, PSP could elim-
inate distortion with a large number of projections, but it is
time-consuming to handle these projections.

The previous methods (Cohen et al. 2018; Yang et al.
2018; Yu and Ji 2019; Lee et al. 2019) only utilize one of the
representations that either suffers from distortion of ERP or
requires plenty of time with PSP. In contrast, we take the ad-
vantages of both representations by applying ERP and PSP
as the inputs of a single two-stage 360◦ detector named Re-
projection R-CNN (Rep R-CNN).

Architecture of Reprojection R-CNN

The overall architecture of Rep R-CNN is illustrated in
Figure 4. Rep R-CNN contains two stages, where the first
stage is a spherical RPN (SphRPN) that efficiently proposes
coarse detections on ERP, and the second stage is a repro-
jection network (RepNet) that accurately refines the pro-
posals based on PSPs. A reprojection RoI alignment (Rep
RoIAlign) is introduced to bridge SphRPN and RepNet by
transforming the SphBBs to the fixed-size inputs for Rep-
Net. The precise architecture of Rep R-CNN is given below.
Spherical Region Proposal Network: Given the ERP of
a 360◦ image, SphRPN generates the objectness score and
the offset of SphBB for each candidate region. Different
from vanilla RPN (Ren et al. 2015), SphRPN adopts Sph-
Conv (Coors, Paul Condurache, and Geiger 2018) in the
backbone network to efficiently extract a distortion-aware
feature map. SphConv adjusts the sampling locations of the
convolutional filters by projecting uniform convolutional fil-
ters on the tangent planes centered at corresponding loca-
tions back to ERP via inverse transformation of gnomonic
projection (Coxeter 1961; Snyder 1987). Since it only alters
the sampling locations, it could extract a more accurate fea-
ture map at the same computation cost. Additionally, we also
introduce spherical anchors (SphAnchor) as regression ref-
erences. SphAnchor simply replaces the height/width mea-
surement by FoVs (e.g., 30◦ × 60◦). SphNet predicts k cor-
responding BBs at each location on the feature map based
on SphAnchors with various shapes and sizes.
Reprojection RoI Alignment: Given the BBs generated
by SphRPN, Rep RoIAlign expands the predictions, repro-
jects the expanded areas on raw pixels of ERP to the tan-
gent planes, and resizes the projections to fixed-size patches.
Specifically, for each SphBB (Bθ, Bφ, Bfovx

, Bfovy
), since

objects may be partially contained due to the biased sam-
pling locations, Rep RoIAlign expands the FoVs of the
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Figure 4: Architecture of Rep R-CNN: SphRPN employs SphRPN to generate coarse proposals; RepNet in the second stage
applies a standard VGG backbone and yields precise SphBBs. A Rep RoIAlign layer is applied to bridge SphRPN and RepNet.

SphBB by a factor r > 1, yielding a larger SphBB as
(Bθ, Bφ, rBfovx

, rBfovy
). Then, the expanded SphBB is

reprojected to the tangent plane located at the predicted ob-
ject center. For each point (θ, φ) within SphBB, the cor-
responding coordinates in tangent plane are calculated by
gnomonic projection (Coxeter 1961; Snyder 1987):

fx(θ, φ) =
cos θ sin(φ−Bφ)

sinBθ sin θ + cosBθ cos θ cos(φ−Bφ)
,

fy(θ, φ) =
cosBθ sin θ − sinBθ cos θ cos(φ−Bφ)

sinBθ sin θ + cosBθ cos θ cos(φ−Bφ)
.

(11)

Then, Rep RoIAlign exploits the average RoI alignment and
converts the obtained PSPs with various shapes and sizes
into the patches with a fixed spatial extent.
Reprojection Network: Based on the distortion-free
patches, RepNet simply applies another backbone network,
i.e., a planar CNN on 2D images, to rectify each prediction,
generating the final detection results for the 360◦ image.

Optimization

Loss Functions: We minimize a similar multi-task loss in
both SphRPN and RepNet as Faster R-CNN (Ren et al.
2015). Both networks have two sibling output layers (Gir-
shick 2015). Suppose that the concerned objects in the 360◦
images belong to a number of K categories. The first layer
outputs the probability distribution over K+1 categories (in-
cluding background), and the second layer outputs a spheri-
cal bounding-box regression offsets (use SphBBs as targets)
parameterized by (Girshick et al. 2014) for each object class,
i.e., t = (tθ, tφ, tfovx

, tfovy
). The loss function for regres-

sion t and the objectness score p is defined as:

L(p, t) = Lcls(p, p
∗) + λ [p∗ ≥ 1]Lreg(t, t

∗). (12)

p∗ is the ground-truth label, and t∗ is the associated regres-
sion target. The classification loss Lcls is the log loss for true
class, while the regression loss Lreg is the smooth L1 loss
in (Girshick 2015).
SphRPN: We set K = 1 in SphRPN, indicating whether the
proposed regions belong to the foreground or background.
Here, the references for the bounding-box regression are
SphAnchors, which are assigned to foreground objects us-
ing a SphIoU threshold of 0.7, and to the background if the
SphIoU is less than 0.3. We sample 128 positive and nega-
tive anchors per image with a ratio of 1:1. The balance pa-
rameter λ is set to 3 in all the experiments.

RepNet: Meanwhile, K is task-dependent in RepNet, and
the references are SphBBs generated by SphRPN. The
SphBB is now considered positive if the SphIoU between
the prediction and the ground-truth achieves at least 0.5, and
negative if SphIoU is less than 0.3. Besides, we sample 128
RoIs per image with a ratio of 1:3 of positive to negative,
and set λ = 1 in RepNet.

Implementation Details

Backbone: We apply VGG-16 (Simonyan and Zisserman
2015) as the backbone network for both stages. conv5 3 is
served as the final feature map of SphRPN.
Anchors: We use k = 9 anchors in SphRPN, with three
scales of (30◦)2, (60◦)2 and (90◦)2 and three aspect ratios
of 1:1, 1:2 and 2:1
Training: We train Rep R-CNN in two steps. In the first step,
we initialize SphRPN by the model pre-trained on ImageNet
dataset (Russakovsky et al. 2015), and fine-tune the network
on specific 360◦ datasets with ERPs of size 512 × 1024 as
input. In the second step, we adopt the regions proposed by
SphRPN. The proposals are filtered by NMS with 0.7 thresh-
old, and reprojected to fixed-size PSPs of 224× 224 by Rep
RoIAlign. We use the weights of SphRPN to initialize Rep-
Net, but we do not share weights in backbone networks as
we find that it would degrade performance. Both SphRPN
and RepNet are trained on 4 GPUs for 20 epochs by 0.9 mo-
mentum optimizer, where the learning rate is initially set to
0.001 and then decreased by a factor of 10 after training 15
epochs. The batch size is 16 in SphRPN and 128 in RepNet.
Inference: At test time, we apply NMS with a threshold
of 0.7 to reduce redundancy in SphRPN and select top-n
ranked proposals for the second stage. After RepNet, we
drop the proposals with less than 0.1 confidence score and
apply another NMS of 0.45 to generate the final detections.

5 Experiments

Experimental Setup

Datasets: We conduct experiment on three datasets, includ-
ing two novel synthetic datasets annotated by UnbBB (in-
cluding both SphBB and TanBB) and one real-world dataset
without pre-labeled annotation.
VOC360: VOC360 is a synthetic dataset generated from
PASCAL VOC 2007 and 2012 (Everingham et al. 2010)
with 20 categories. We crop the objects with random-sized
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n VOC360 COCO-Men Speed

UnbBB and UnbIoU 50 72.47 83.89 597ms
ERPBB and ERPIoU 50 30.61 37.79 163ms

CirBB and CirIoU 50 24.48 29.36 182ms
TanBB and PolyIoU 50 58.35 65.17 264ms
SphBB and SphIoU 50 71.65 81.48 178ms

Table 1: mAP and inference speed of different criteria in Rep
R-CNN on both VOC360 and COCO-Men datasets. n rep-
resents the number of PSPs used in the network.

background from images, and then project the cropped
images to arbitrary points on the sphere. Each image in
VOC360 is attached by only one cropped image. VOC360
has 15000 training images, 1800 validation images, and
4955 test images.
COCO-Men: For the multi-object scenario, we construct
COCO-Men dataset, which combines the real-world back-
ground 360◦ images and the segmented images of people
cropped from COCO dataset (Lin et al. 2014). Each image
includes three to six people, and every pair of people has an
overlapping of less than 0.3. In total, the dataset comprises
4000 training images, 2000 validation images, and 1000 test
images.
SUN360: To demonstrate the capability of Rep R-CNN for
real scenes, we use SUN360 dataset (Xiao et al. 2012) which
contains real-world 360◦ images from Internet.
Performance Metric: To give a comprehensive evaluation,
we report both standard mAP in all individual classes (Ever-
ingham et al. 2010) and the inference speed of the detectors.
A detection is considered to be correct when the UnbIoU be-
tween the prediction and ground-truth exceeds 50%, which
is unbiased and fair for all comparison methods.

Rep R-CNN on Different Criteria

To give a convincing result among criteria, we exploit differ-
ent criteria in the Rep R-CNN and transform the part origi-
nally proposed for spherical criteria to the compared criteria.
Specifically, for ERPBB and CirBB, we project the objects
on the sphere back to ERP, and utilize rectangles and circles
to tightly bound the objects. Regarding TanBB, we sample
24 points on the outline of each BB for PolyIoU comput-
ing. The SphAnchor and spherical bounding-box regression
are both adjusted to the corresponding criteria. For a fair
comparison, we use the same network architecture in Rep
R-CNN and fine-tune the parameters for different criteria.

As shown in Table 1, the proposed spherical criteria out-
performs the other existing criteria under the similar infer-
ence time, and achieves highly competitive results compared
with unbiased criteria on both VOC360 and COCO-Men
datasets while running at 3x speed. Though TanBB is also
an unbiased measurement of UnbBB, the use of PolyIoU
degrades the performance in both mAP and speed. Besides,
since ERP-based criteria introduce bias in BBs, they get
much lower mAP than the other criteria.

Performance of Two-stage Rep R-CNN

Baseline Methods: We take the following state-of-the-art
networks as the baseline methods.

n VOC360 COCO-Men Speed

Multi-projection YOLO 200 54.29 61.02 273ms
Sphere-SSD - 48.25 54.79 86ms
SPHCNN - 49.41 48.17 224ms
S2CNN - 37.45 45.36 139ms

Spherical CNN - 35.12 41.53 145ms
SpherePHD - 50.79 59.69 323ms

G-SCNN 50 50.30 56.03 202ms
Multi-kernel 50 44.23 51.99 144ms
Rep R-CNN 10 69.70 65.43 112ms
Rep R-CNN 20 71.88 74.72 127ms
Rep R-CNN 50 71.65 81.48 178ms
Rep R-CNN 100 71.57 80.34 256ms

Table 2: Performance comparison between baseline methods
and Rep R-CNN on both VOC360 and COCO-Men datasets.
The boldface denotes the best performance on each dataset.

Figure 5: Latitude/mAP curves of Rep R-CNN and baseline
methods on (a) VOC360 and (b) COCO-Men.

(1) Multi-projection YOLO (Yang et al. 2018): The overlap-
ping PSPs are selected to cover the sphere, and then fed to
the YOLO detector (Redmon and Farhadi 2017).
(2) Sphere-SSD (Coors, Paul Condurache, and Geiger
2018): The Sphere-SSD simply replaces normal convolu-
tions in the vanilla SSD by SphConv.
(3) SPHCNN (Su and Grauman 2017): We add a 3× 3 conv
on top of conv5 3 feature map of SPHCNN (Su and Grau-
man 2017) for bounding-box regression and classification in
real-world 360◦ detection scenario.
(4) S2CNN (Cohen et al. 2018): We follow the authors’ im-
plementation of S2CNN, and adapt it to the detection task
by adding a 3× 3 conv on top of the combined feature map.
To avoid out-of-memory error, we scale down the input res-
olution to 64× 64 as suggested by authors.
(5) Spherical CNN (Esteves et al. 2018): We modify the au-
thors’ implementation in the same way as S2CNN. The input
is again scaled down to 64× 64 due to the memory limit.
(6) SpherePHD (Lee et al. 2019): We follow the authors’
open source CNN which takes icosahedral mesh as input
and apply YOLO detector (Redmon et al. 2016) for 360◦
detection.
(7) G-SCNN (Yu and Ji 2019): We refer to the two-stage G-
SCNN which transforms the first-stage ERP to grid map and
applies both S2 and SO(3) conv on it in the second stage.
(8) Multi-kernel (Wang and Lai 2019): We utilize the multi-
kernel layers and position information in a Faster R-CNN.

All the baseline methods except Multi-projection YOLO
and SpherePHD take ERP as original input, and the back-
bone networks are all the same VGG-16 architecture. Be-
sides, since most of the existing methods utilize the biased
ERPBB and ERPIoU as criteria, if we only take the orig-
inal implementation of those methods, they will definitely
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Figure 6: Detection results of Rep R-CNN on the three datasets.

get poor results. Hence, we adopt the proposed spherical
criteria in all one-stage baseline methods which only af-
fects the final detection procedure. For the two-stage detec-
tors, we only apply spherical criteria in the second stage.
The main consideration is that all two-stage baselines apply
RoI pooling directly on the extracted feature map. If we use
spherical criteria in the first stage, the proposals of SphBBs
would correspond to distorted regions on ERP, which can not
be appropriately transformed to fixed-size features on ERP.
Thus, we reserve the original ERP-based criteria in the first
stage. In addition, all methods are tuned by either implemen-
tation with recommended parameters or grid search for the
best performance. Please refer to supplementary material for
additional details of datasets and baseline methods.

Comparison with Baseline Methods: We compare Rep
R-CNN with the baseline methods in both VOC360 and
COCO-Men datasets. The results are shown in Table 2. It
is obvious that Multi-projection YOLO achieves the best
performance in the baseline methods owing to the undis-
torted PSP, but is also time-consuming for the large num-
ber of samplings. SpherePHD also performs well in both
datasets, but suffers from the oversampling in icosahedron
and results in low speed. Based on the two-stage framework,
G-SCNN and Multi-kernel get higher mAP than one-stage
S2CNN and spherical CNN, but are still inferior to the above
methods due to the biased ERP feature generated from the
first stage. Among those one-stage detectors, Sphere-SSD
exhibits competitive performance in both datasets with al-
most 3x speed faster than both Multi-projection YOLO.

Regarding Rep R-CNN, it can be observed that the pro-
posed detector adopts the rapid and relatively precise Sph-
Conv in SphRPN, and then regresses the predictions with
the accurate PSP-based RepNet. Therefore, Rep R-CNN
combines the advantages of both Multi-projection YOLO
and Sphere-SSD, which is fast and accurate. The results
in VOC360 and COCO-Men convincingly demonstrate the
effectiveness of the proposed method. Specifically, Rep R-
CNN achieves 71.88 mAP on the VOC360 dataset and 81.48
mAP on the COCO-Men dataset, exceeding the strongest
baseline, i.e., Multi-projection YOLO, by over 30% in both
datasets. In addition, Rep R-CNN achieves the best perfor-
mance with competitive speed , which is faster than almost
all the baseline methods.

Moreover, to show the robustness of Rep R-CNN, we ex-
amine the mAP of the detection algorithms by varying the
latitude, and plot the latitude/mAP curves in Figure 5. We
only consider the methods that are affected by latitude (take
ERP as input). It is obvious that Rep R-CNN forms an upper
envelope over all existing methods. Furthermore, though the
distortion in ERP varies with latitude, Rep R-CNN is only
slightly affected, and exhibits competitive performance even
if the objects are extremely distorted, i.e., near the poles.
Some predictions of Rep R-CNN are visualized in Figure 6.
The result reveals that Rep R-CNN is robust to the various
distortion and discontinuity situations.

Rep R-CNN over Real-world Dataset

To verify that the proposed Rep R-CNN is also effective
in actual scenario, we exploit the Rep R-CNN trained on
VOC360, and directly apply it to the real-world SUN360
dataset. As shown in Figure 6.c), consistent with the previ-
ous experiments, objects of various categories at different
latitudes can be successfully detected despite the distortion
and discontinuity, demonstrating that Rep R-CNN could per-
form well over the real-world scenarios. Additional qualita-
tive results are provided in the supplementary material.

6 Conclusion

In this paper, we present a fast and accurate spherical cri-
teria, including SphBB and SphIoU, for 360◦ object detec-
tion, and introduce a novel two-stage object detector named
Rep R-CNN by combining the strength of both ERP and
PSP. Experimental results on the novel synthetic VOC360
and COCO-Men datasets show that both spherical criteria
and Rep R-CNN outperforms several state-of-the-art 360◦
object detectors with the similar computation overhead, ver-
ifying efficiency and accuracy of the design. In addition, the
model can be transferred to the real-world SUN360 dataset
and remain good detection performance, indicating that Rep
R-CNN is applicable to the real-world scenarios.
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